Combining learning-based intensity distributions with nonparametric shape priors for image segmentation
نویسندگان
چکیده
Integration of shape prior information into level set formulations has led to great improvements in image segmentation in the presence of missing information, occlusion, and noise. However, most shape-based segmentation techniques incorporate image intensity through simplistic data terms. A common underlying assumption of such data terms is that the foreground and the background regions in the image are homogeneous, i.e., intensities are piecewise constant or piecewise smooth. This situation makes integration of shape priors inefficient in the presence of intensity inhomogeneities. In this paper, we propose a new approach for combining information from shape priors with that from image intensities. More specifically, our approach uses shape priors learned by nonparametric density estimation and incorporates image intensity distributions learned in a supervised manner. Such a combination has not been used in previous work. Sample image patches are used to learn the intensity distributions, and segmented training shapes are used to learn the shape priors. We present an active contour algorithm that takes these learned densities into account for image segmentation. Our experiments on synthetic and real images demonstrate the robustness of the proposed approach to complicated intensity distributions, and occlusions, as well as the improvements it provides over existing methods. Abdurrahim Soganli Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey E-mail: [email protected] Mustafa Gokhan Uzunbas Computer Science Department, Rutgers University, Piscataway, NJ 08854 USA E-mail: [email protected] Mujdat Cetin Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Tuzla, Istanbul, Turkey E-mail: [email protected]
منابع مشابه
Nonparametric statistical methods for image segmentation and shape analysis
Image segmentation, the process of decomposing an image into meaningful regions, is a fundamental problem in image processing and computer vision. Recently, image segmentation techniques based on active contour models with level set implementation have received considerable attention. The objective of this thesis is in the development of advanced active contour-based image segmentation methods ...
متن کاملDisjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation
The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for ima...
متن کاملSegmentation of embryonic and fetal 3D ultrasound images based on pixel intensity distributions and shape priors
This paper presents a novel variational segmentation framework combining shape priors and parametric intensity distribution modeling for extracting the fetal envelope on 3D obstetric ultrasound images. To overcome issues related to poor image quality and missing boundaries, we inject three types of information in the segmentation process: tissue-specific parametric modeling of pixel intensities...
متن کاملLeft Ventricle Tracking Using Overlap Priors
This study investigates overlap priors for tracking the Left Ventricle (LV) endo- and epicardium boundaries in cardiac Magnetic Resonance (MR) sequences. It consists of evolving two curves following the Euler-Lagrange minimization of two functionals each containing an original overlap prior constraint. The latter measures the conformity of the overlap between the nonparametric (kernel-based) in...
متن کاملMulti-object segmentation using coupled nonparametric shape and relative pose priors
We present a new method for multi-object segmentation in a maximum a posteriori estimation framework. Our method is motivated by the observation that neighboring or coupling objects in images generate configurations and co-dependencies which could potentially aid in segmentation if properly exploited. Our approach employs coupled shape and inter-shape pose priors that are computed using trainin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal, Image and Video Processing
دوره 8 شماره
صفحات -
تاریخ انتشار 2014